An Efficient Pseudo-Random Generator with Applications to Public-Key Encryption and Constant-Round Multiparty Computation

نویسندگان

  • Ivan Damgård
  • Jesper Buus Nielsen
چکیده

We present a pseudo-random bit generator expanding a uniformly random bitstring r of length k/2, where k is the security parameter, into a pseudo-random bit-string of length 2k − log(k) using one modular exponentiation. In contrast to all previous high expansion-rate pseudo-random bit generators, no hashing is necessary. The security of the generator is proved relative to Paillier’s composite degree residuosity assumption. As a first application of our pseudo-random bit generator we exploit its efficiency to optimise Paillier’s crypto-system by a factor of (at least) 2 in both running time and usage of random bits. We then exploit the algebraic properties of the generator to construct an efficient protocol for secure constant-round multiparty function evaluation in the cryptographic setting. This construction gives an improvement in communication complexity over previous protocols in the order of nk, where n is the number of participants and k is the security parameter, resulting in a communication complexity of O(nk|C|) bits, where C is a Boolean circuit computing the function in question. keywords: constant-round cryptographic protocols, multi-party computation, pseudo-random generator, public-key encryption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and formal verification of DZMBE+

In this paper, a new broadcast encryption scheme is presented based on threshold secret sharing and secure multiparty computation. This scheme is maintained to be dynamic in that a broadcaster can broadcast a message to any of the dynamic groups of users in the system and it is also fair in the sense that no cheater is able to gain an unfair advantage over other users. Another important feature...

متن کامل

پروتکل کارا برای جمع چندسویه امن با قابلیت تکرار

In secure multiparty computation (SMC), a group of users jointly and securely computes a mathematical function on their private inputs, such that the privacy of their private inputs will be preserved. One of the widely used applications of SMC is the secure multiparty summation which securely computes the summation value of the users’ private inputs. In this paper, we consider a secure multipar...

متن کامل

Efficient Scalable Constant-Round MPC via Garbled Circuits

In the setting of secure multiparty computation, a set of mutually distrustful parties carry out a joint computation of their inputs, without revealing anything but the output. Over recent years, there has been tremendous progress towards making secure computation practical, with great success in the two-party case. In contrast, in the multiparty case, progress has been much slower, even for th...

متن کامل

Small Private Key PKS on an Embedded Microprocessor

Multivariate quadratic (MQ) cryptography requires the use of long public and private keys to ensure a sufficient security level, but this is not favorable to embedded systems, which have limited system resources. Recently, various approaches to MQ cryptography using reduced public keys have been studied. As a result of this, at CHES2011 (Cryptographic Hardware and Embedded Systems, 2011), a sma...

متن کامل

Constant-Round Multiparty Computation Using a Black-Box Pseudorandom Generator

We present a constant-round protocol for general secure multiparty computation which makes a black-box use of a pseudorandom generator. In particular, the protocol does not require expensive zero-knowledge proofs and its communication complexity does not depend on the computational complexity of the underlying cryptographic primitive. Our protocol withstands an active, adaptive adversary corrup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014